Greenhouse Energy Conservation Checklist/Audit

(Adapted by A.J. Both, Rutgers University, and Paul Fisher, University of Florida from a checklist developed by John W. Bartok Jr., Professor Emeritus, University of Connecticut) 2007

Structure #/name _____

Approximate year built

Dimensions and space use

Size: length _____ ft., bay width _____ ft., number of bays:_____

Square feet of floor space:_____ Sq. ft. of bench/floor space covered by crops:_____

% Space utilization (floor area used for crop production/total floor space)?_____

Number of hanging baskets:______ Sq. ft. of floor space per hanging basket:_____

List main crops [in general groups (e.g., plugs)] grown in the greenhouse at different times of year:

Crop type	Months	Sq. ft. of greenhouse space filled

Is the greenhouse used for	production?	retail?	both?	

Are crops grown on floor _____, benches _____, overhead ____? (check all that apply)

Are plants grown in one or multiple levels (e.g., hanging baskets)? Yes No

Is a roll-out bench system used for spring bedding plant production? Yes No

Is the greenhouse completely filled with plants during the time it is heated? Yes No

Suggestions (consult an expert) to improve space utilization:

Greenhouse glazing and leaks

What type(s) of film/rigid panel/glass is(are) used?					
What is the condition of the glazing material? Exce	llent	Good	Fair		
If polyethylene film, does it have an IR barrier? does it have a no-drip surface? is it inflated using <u>outside</u> air?	Yes Yes Yes	No No No			
Which greenhouses surfaces are covered with a dou End walls Sidewalls Roof	ble laye	r (including r	multi-wal	ll pane	ls)?
Is the greenhouse located in a wind sheltered area (without I	reducing sun	light)?	Yes	No
Are windbreaks installed around the greenhouse (wit	hout red	ducing sunlig	ht)?	Yes	No
Does the greenhouse feel drafty? Yes No					
Do you observe any undesirable leaks/openings in the	ne greer	house cover	?	Yes	No
Are doors/windows closing properly and kept closed	when no	ot in use?	Yes	No	
Does the ventilation window close properly? Yes	No				
Do the fan louvers close properly? Yes No	NA				
Suggestions (consult an expert) in terms of glazing a	nd leak	S:			

Shade curtain

Is a shade curtain installed?	Yes	No			
If yes, does the shade curtain	n also serv	/e as e	nergy blanket?	Yes	No
what is the shade fact	or (%) of t	he curt	ain?		
what is the energy sav	rings facto	or (%) o	f the curtain?		
what is the control stra	tegy follo	wed for	closing the curta	ain to conse	erve energy?

what is the control strategy followed for opening the curtain after a cold night?

what is the control strategy for using the curtain as shade screen?

Suggestions (consult an expert) in terms of shade curtains:

Perimeter insulation Has perimeter insulation been installed? Yes No If yes, what material, how thick and to what depth? If applicable, are knee walls (or side walls to bench height) insulated? NA Yes No Is the wall area directly behind side wall heating pipes insulated? Yes No NA What is the condition of the various insulation materials? Excellent Good Fair NA Suggestions (consult an expert) in terms of perimeter insulation: Heating system (Note: calculation methods are provided at the end of this checklist) - 4 - .-. ... ~ .

What type of	heating system is used?	Hot w	ater	Hot a	ir	Steam	n Oth	ner	
What is the r	nanufacturer and model of	the hea	ating sy	/stem?					
What is the t	otal installed capacity of the	e heatir	ng syst	em?					
What is the r	nighttime set point temperat	ture?		_°F					
What is the le	ocal minimum design temp	erature	(cons	ult figur	e on p	age 7)?		_°F	
What is the t	otal calculated heat require	ment (calcula	te your	self or	ask ma	nufacturer)?	
Is the installe	ed capacity adequate, giver	n the he	eat req	uireme	nt and	desired	l delta T?	Yes	No
What fuel so	urce(s) is(are) burnt in the	boiler/h	eaters	?					
Does the gro	wer use floor and/or bench	heatin	g?	Yes	No				
Is the temper	rature sensor or thermostat	shield	led fror	n sunli	ght?	Yes	No		
	in an aspirated box?	Yes	No						
	within 3 feet of the crop ca	anopy?		Yes	No				
	at a representative locatio	n in the	e house	e?	Yes	No			
	calibrated during the last 1	l2 mon	ths?		Yes	No			
If the grower	uses a thermostat, what is	its acc	uracy?	' ±	o0	F			
	is it an electronic thermost	tat?	Yes	No	NA				
Are HAF fans	s installed and in use?		Yes	No					
	commercial grade or resid	ential h	nouse f	ans?	Comr	mercial	Residentia	al	
	turned off when venting ai	r?	Yes	No					

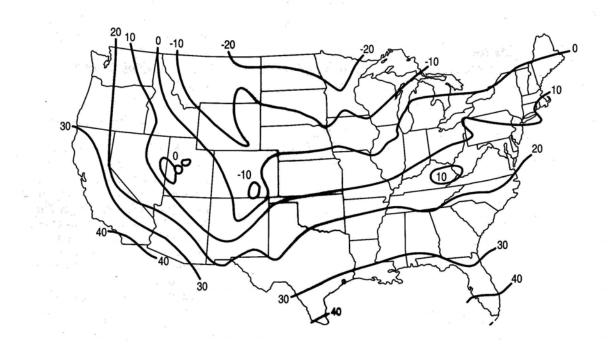
Did you observe any leaks in the hot water distribution system? Yes No NA							
Are the hot water heating pipes clean?	Yes	No	NA				
Are the hot water distribution pipes insulated?	Yes	No	NA				
Are hot water tanks close to largest and most frequer	nt point	of use	?	Yes	No	NA	
What is the temperature setting on the hot water stora	age tar	ık?		°F	NA		
Are heat exchangers (e.g., located inside unit heaters	s) clear	ו?	Yes	No	NA		
Is the unit heater or boiler power vented?	Yes	No	NA				
Was the heating system serviced immediately before	or duri	ng this	cold s	eason?)	Yes	No
Is there more than one heating zone (e.g. bench/perin	neter z	ones o	or multi	ple bay	′s)?	Yes	No
Is there a backup heating source in case the main he	ater fai	ls?	Yes	No			
Suggestions (consult an expert) in terms of heating s	ystem:						

Ventilation and Cooling Is the greenhouse naturally or mechanically ventilated? Naturally Mechanically If naturally, is the ventilation system motorized? Yes No is it an open-roof greenhouse? No Yes If mechanically, are the fans AMCA rated (check AMCA seal) and do they have a ventilation Don't know efficiency ratio (VER) larger than 15? Yes No are the fan motors variable speed motors? Yes No are the fans staged (and what is their staging)? Yes No are the belts on the fans tightened and aligned properly? Yes No are the blades balanced and in good condition? Yes No Are outside doors routinely kept closed when the greenhouse is venting? No Yes NA Are indoor doors routinely kept closed between compartments? Yes No Does the greenhouse have an evaporative cooling system? Yes No If yes, what type? Pad and Fan System Fog System Does the grower report any humidity problems? Yes No Suggestions (consult an expert) in terms of ventilation and cooling:

Insect Screening Is the ventilation opening outfitted with insect screening? Yes No					
If no, does the grower report insect problems? Yes No					
If yes, what is(are) the type(s) of insect(s) that need to be screened out?					
If yes, what is the mesh size (or opening size) of the screen material?					
If yes, what is the pressure drop across the screen material? Inches of water gauge					
If yes, is the insect screen in good condition (i.e., without unwanted openings)? Yes No					
If yes, how often is the screening material cleaned?					
If yes, does the ventilation system provide adequate ventilation on warm summer days? Yes No					
Suggestions (consult an expert) in terms of insect screening:					
Drainage Does rain and melt water drain away from the building properly? Yes No Is there excess irrigation water on the floor Yes No Suggestions (consult an expert) in terms of drainage:					
Conserving Electricity Are all electrical motors high efficiency? Yes No Were any incandescent lamp bulbs replaced with fluorescent or HID bulbs? Yes No Was a licensed electrician involved in design of the system? Yes No Has the entire electric system been checked recently by a licensed electrician? Yes No How many phases does the electric system have?					

Step 1: Determine greenhouse dimensions (in feet). Wall height A = House width B = House length C = Rafter Length D = Lower wall height E = Upper wall height F = Gable height G or H =

Step 2: Calculate surface areas (in ft²) and perimeter distance (in ft) Note: N is the number of greenhouse bays. N = 1 for a single bay greenhouse. Lower side wall area: $2N(E \times B) + (E \times 2C) =$ Upper side wall area: $2N(F \times B) + (F \times 2C) =$ Or, Single material side wall: $2N(A \times B) + (A \times 2C) =$ Gable-style greenhouse roof surface area: $2N \times D \times C =$ Gable-style greenhouse gable area (end wall above gutter): $N \times B \times G =$ Curved-roof style greenhouse roof surface area: $N \times D \times C =$ Curved-roof style greenhouse gable area (end wall above gutter): $1.1N \times B \times H =$ Hoop-house end wall area: $1.5N \times B \times H =$ Perimeter: $2[(N \times B) + C] =$


Step 3: Determine U-values for each material used in the various surface areas. Lower wall area: $U_1 =$ Upper wall area: $U_2 =$ Single material wall: $U_3 =$ End wall area: $U_4 =$ Roof: $U_5 =$

The U-values (heat transfer coefficients) can be determined from the data shown in the table below.

Material	U in Btu/hr per ft ² per °F
Single (double) layer of glass	1.1 (0.7)
Single (double) layer of poly	1.1 (0.7)
Double layer plus energy curtain	0.3 – 0.5
Double layer acrylic	0.6
Double layer polycarbonate	0.6
1/2" plywood	0.7
8" concrete block	0.5
2" Polystyrene	0.1 (R = 10)

Step 4: Calculate the structural heat loss (Q_{STRUC} in Btu/hr) $Q_{STRUC} = \Sigma(U_i \times A_i) \times \Delta T$ (i.e., the sum of all applicable heat losses) Heat loss from lower wall area: Lower side wall area $\times U_1 \times \Delta T =$ Heat loss from upper wall area: Upper side wall area $\times U_2 \times \Delta T =$ Or, Heat loss from single material wall area: Single material side wall area $\times U_3 \times \Delta T =$ Heat loss from gable or curved-end area: Gable or curved-end area $\times U_4 \times \Delta T =$ Heat loss from roof area: Roof area $\times U_5 \times \Delta T =$ Total $Q_{STRUC} =$

 ΔT (pronounced 'delta T') is the temperature difference between inside and outside, or the difference between the nighttime temperature set point (inside) and the local minimum design temperature (outside). This minimum design temperature can be determined for a particular location from historical weather data, or estimated from the figure shown below.

Step 5: Calculate the perimeter heat loss (Q_P in Btu/hr) Q_P = Perimeter heat loss factor x Perimeter x ΔT For perimeter heat loss factor, use a value of 0.4 or 0.8 Btu/hr per linear foot of perimeter per °F depending on whether the perimeter is insulated or not.

Step 6: Calculate the greenhouse volume (in cubic feet) Gable-style greenhouse volume: $N[(A \times B \times C) + (B \times G \times C/2)] =$ Single curved roof greenhouse volume: $2H \times B \times C/3 =$ Multiple curved roof greenhouse volume: $N[(A \times B \times C) + (2H \times B \times C/3)] =$

Step 7: Calculate the infiltration heat loss (Q_A in Btu/hr) $Q_A = 0.02 \text{ x}$ Greenhouse volume x Air exchanges per hour x $\Delta T =$

For air exchanges per hour use the following table.

Type of construction	Air exchanges per hour
New, glass	0.75 - 1.5
New, double poly	0.50 - 1.0
Old, glass and in good condition	1.0 – 2.0
Old, glass and in poor condition	2.0 - 4.0

Step 8: Calculate the total heat loss (Q_T in Btu/hr) $Q_T = Q_{STRUC} + Q_P + Q_A =$

Adjustment to the heat loss calculations should be made for situations with a large ΔT and/or locations with high average wind velocities: If ΔT is larger than 70°F, and if the average wind velocity is larger than 15 mph, multiply the calculated total heat loss by: (1 + 0.08) for every increase in ΔT of 5°F above 70°F and (1 + 0.04) for every 5 mph increase in average wind velocity above 15 mph. For example, if $\Delta T = 80$ °F and the average wind velocity is 25 mph, multiply the calculated total heat loss by a factor of: 1 + (0.16 + 0.08) = 1.24.

If the greenhouse heating system is designed properly, the capacity of the heating system should match the calculated total heat loss Q_T (that is the predicted heat loss on the coldest night). Make sure that the heating system has an output rating that equals the calculated total heat loss. When the heating system is rated by input, multiply this value by the efficiency of the system (generally in the 70-80% range) to determine the rated output.

Additional reading:

- Aldrich, R.A. and J.W. Bartok. 1994. Greenhouse Engineering, NRAES Publication No. 33. Natural Resource, Agriculture, and Engineering Service. P.O. Box 4557 Ithaca, NY 14852. http://www.nraes.org.
- Bartok, J. W. 2001(revision). Energy Conservation for Commercial Greenhouses. NRAES Publication No. 3. Natural Resource, Agriculture, and Engineering Service. P.O. Box 4557 Ithaca, NY 14852. http://www.nraes.org.